“FPSO Topsides Integration Approach”
FPSO Examples

Belenak FPSO

Schiehallion FPSO

Terra Nova FPSO

Gryphon FPSO
Integration – Issue 1

• Many bid teams experience problems for estimating and scheduling the topsides integration work.

• Many FPSO projects have suffered cost / schedule overruns which often starts at the integration phase.
Integration – Issue 2

![Integration Diagram]

Time

Man-hours

- **Integration Starts**
- **Planned**
- **Actual** (tight schedule)
- Planned completion date ▼
- Actual completion date ▼
Integration Risk

Additional Cost Risks

- 5,000 tonnes topside ->> up to US$ 20 million
- 10,000 tonnes topside ->> up to US$ 40 million
- 20,000 tonnes topside ->> up to US$ 80 million

“Schedule delay up to 6 month”

Integration Cost Risks Includes:

- Under estimates
- Re-work
- Design changes
- Inefficiencies
- Carry-over work and delays incurred during the integration phase.
Integration Problems - Causes

• Under estimating of integration work scope due to lack of experience and / or historical data.
• Inexperienced / motivated contractors.
• Carry-over work from shipyard, vendors or topside fabricators.
• Incomplete designs.
• Poor facilities and systems.
• Culture differences between offshore and shipyard practices.
Escalation of Integration Problem

- Installation of in-complete PAU’s due to tight lifting window/schedule pressure.
- Preferential engineering.
- Efficiency drop due to poor material/personnel logistics.
- Weather influence (work in open air).
- Design does not support building sequence.
- Limited number of work faces per period.
Escalation of Integration Problem cont’d

• Poor design change management (mis-use of safety arguments)
• Rework on marine systems due to culture clash between marine engineers and topside engineers
• Poor engineering support during construction/integration
• Incomplete/late equipment package delivery
• Late involvement of Operations and/or missing acceptance criteria
Design - Construction Clashes

Wrong (higher amounts of clashes)

Right (minimal clashes)
Integration Related Problems

• Unnecessary bureaucracy

• Poor planning

• Work force fear to loose job after project completion

• Low level of supervision

• Poor availability of skilled labour

• Lack of project team / workforce incentives

• Poor work by vendors and shipyards
Project Management Practices

• Check contractors capacities / capability before contracting

• Develop integration plan prior to award jointly with contractor

• Contracts provide protection but do not guarantee performance of the subcontractor

• Condition clients when schedule / budget expectations are too tight
 – Use IPA or PACE benchmarking data or risk assessment
Project Management Practices cont’d

• Identify integration risks and develop contingency plans
• Create flexibility in integration plan
• Develop material / information logistics tools
• Assess and improve integration facilities
• Develop a specific execution plan for instrumentation and control systems including a technical system philosophy
Project Management Practices cont’d

• Make engineers responsible for making the design work
 – Appoint responsible engineers per area / PAU that carry the technical responsibility from start until first oil. (start to finish engineering)

• Construction approves release of AFC integration drawings
 (check drawing on completion prior start of integration work)

• Object engineering supports efficient integration
Project Management Practices cont’d

- Integrate operations personnel from project start
- Commissioning leads the factory acceptance tests
 - Commissioning approves release of equipment
- Integrate operations personnel in commissioning team and have one (1) final acceptance procedures accepted by all parties
Develop detailed integration plan with Contractor which includes:

- PAU completion works (carry-over)
- Prefabrication of hook-up elements
- PAU installation
- Structural hook-up activities (including paint repairs)
- Piping hook-up activities (incl. bolt tensioning, painting and insulation)
- Electrical / Instrument hook-up activities
- Hydro / NHe leak testing
- Loop checking
- Mechanical completion inspections
- Commissioning and start-up
- Sail away activities
Project Management Practices cont’d

• Develop a sail away / first oil check list (count down plan) early
 – Appoint count down plan manager
 – Appoint custodian per activity
 – Arrange regular sail away / first oil meetings
 – Identify problems early
 – Appoint separate task force to deal with urgent problems

• Develop punch list for outstanding work
 – Minimize carry-over work
 – Monitor carry-over work man-hours weekly and later daily
 – Include completion of punch list in count down plan
Project Management Practices cont’d

- Set-up progress reporting in % on various levels
- Count outstanding work per activity regularly, example:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total spools to be installed</td>
<td>5000</td>
</tr>
<tr>
<td>Total spools installed</td>
<td>3567</td>
</tr>
<tr>
<td>Number of spools installed this week</td>
<td>345</td>
</tr>
<tr>
<td>Planned number of spools</td>
<td>300</td>
</tr>
</tbody>
</table>

Note: show progress as graphs
Design Practices

- Size of PAU is determined by fabrication facilities, lifting capacity, PAU design and COST
- Maximizing or minimizing number/size of PAU has no benefit
 - minimizing: more complex modules but less hook-up work
 - maximizing: simple skids/pancakes but more hook-up work
- Distribute control system per PAU
- Keep pipe rack separate of PAU’s
- Minimize integration of topside and marine systems
- Set design freeze date and apply sail away practices (punch list)
- Demobilize engineers after design freeze and appoint team to close-out the documented design punch list
Integration Practices 1

- Maximize PAU completion prior to installation
- Create flexibility within lifting schedule
- Minimize any shipyard carry-over work (define interfaces)
- Develop material control systems
- Built / rent facilities to optimize personnel logistics
- Develop cranage plan during design
- Identify weather sensitive activities up front (create schedule flexibility or develop weather protection)
- Set-up rigid procedure for change management
• Keep offshore commissioning team away from marine systems
• Mobilize small marine team to operate and final test marine systems
• Keep pragmatic engineers on site for queries (allow no changes)
• Foster open team approach with certifying/verifying inspectors
Integration Practices 2

Logical Approach

Detailed Engineering → Check for Completeness

Materials → Check & Confirm Availability

Services → Implement Mobilization Plan

Efficient Integration Starts with Correct Work Preparation and Planning
Integration Practices 3

Integration by Offshore Fabricator

Risks
- Rework on ship systems
- Inefficient completion of carry-over work
- Poor handling of vessel
- Inefficient people / material logistics
- Inefficient cranage arrangement

Integration by shipyard

Risks
- Availability of offshore skilled labor
- Poor understanding of integration scope of work
- Lower quality of hook-up work
- Availability of commissioning personnel

The Offshore Fabricator is Preferred for Integration, but Final Selection Should Depend on Availability of Quayside and Proper Risk Assessment
Integration Practices - Facilities

- PAU lifting
- Crane facilities
- Access
- Moorings
- Facilities
- Logistics
Land Based Crane

Pro’s
- Lift capacity up to 1600 tonnes
- Long rental period possible (create schedule flexibility)
- Can be used as general fabrication crane

Con’s
- Requires quayside with high bearing capacity (15 ton/m)
PAU Lifting cont’d

Shear Leg

Pro’s
- Lift capacity up to 3000 tonnes
- No specific quayside requirements

Con’s
- Expensive to rent for longer periods
- High mobilisation cost for remote locations
- Unreliable availability
Clear Walkways

Access lifts

Walkways

Temp. cable / hose bridges
Moorings

Integration at quayside without facilities, allow for mooring budget (typ. fab yard)

Shipyards have mooring facilities.

- Large lateral area generate large mooring forces
- FPSO mooring require bollards up to 100 tonnes
- Tidal water will require adjustable mooring using winches
- Try to use existing winches (conversion only)

Note: take crane locations into account during mooring design
Personnel Logistic Problems

Offices

Fabrication shop

Canteen

Warehouse

500 meter

60 minutes

30 minutes

45 minutes

Timing - vise versa

500 meter

IRVINE ENGINEERING
Preferred Integration Facility

- Fabrication shop / warehouse
- Offices / canteen / changing rooms in loft
- Additional portacabins on roof
- Quayside
Material Logistics

- Use computerized material control system
- Set-up lifting and rigging coordination and appoint responsible manager
- Tag all components for location
- Appoint night shift for lifting and rigging of non critical lifts i.e. scaffolding material, skips, etc.
- Create paved material set down area close to FPSO
- Equip all foreman with radios
- Analyze and optimize material flow and number of activities
- Use waste management systems
Commissioning Practices 1

- Balance number of sub system (flexibility versus efficiency)
- Set and agree acceptance criteria during design
- Rationalize number of mechanical completion checks
 - watch for job creation
- Integrate commissioning activities in integration plan
- Commissioning approves release of vendor equipment and possible carry-over work is part of the commissioning work
- Single mechanical completion inspection procedures signed by Construction, Commissioning and Operations (Client)
- Make commissioning team responsible to identify the outstanding work together with Operations / Construction
- Do not use offshore work permit system, use yard permit practices
1. Design input & review
2. Factory acceptance test
3. Mechanical completion
Handover

- Integrated commissioning and operations / client team
- Crew operates commissioned system prior sail away
- Hand-over is part of commissioning process
Estimating Practices

1. Estimate hook-up work (S, P, E and I)
 (Apply norms which reflect outdoor work on vessel)
2. Estimate minimum PAU completion work
3. Estimate minimum shipyard carry-over work
4. Estimate minimum rework / changes
5. Estimate work to make FPSO ready for sea
6. Estimate repair work
7. Integration cost
 sub total
8. Estimate integration risks
 sub total
9. Risked integration cost
 Total
“FPSO Topsides Integration Approach”

Thank You
Contacts

For further information on our designs and services please contact:

Singapore Office:
39, Pandan Road,
Singapore. 609281
Tel.: +65 91093201
 +65 68539106

Malaysia Office:
11, Jalan 14/2, Taman Tar,
Ampang, Salangor, Kuala Lumpur,
68000
Tel.: +60 342665601
Mob.: +60 123210824
 +60 178810807

Dubai Office:
Jumeirah Lake Towers,
P.O. Box: 643593,
Cluster C, Goldcrest
Executive Tower Office
706,
Dubai. UAE.
Tel.: +971 4 447 0897
Fax: +971 4 447 0896
Mob.: +971 567451923
(Main Company Contact)

Irvine Engineering Pte Ltd - Registered Address:
60 Paya Lebar Road,
#08-43 Paya Lebar Square,
Singapore. 409051
Tel.: +65 68539106

enquiries@irvineeng.com